Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(η^{6}-Hexamethylbenzene)(mesidine)ditriflatoruthenium(II)

Frank J. Feher,* Richard K. Baldwin and Joseph W. Ziller

Chemistry Department, University of California at Irvine, Irvine, CA 92697-2025, USA
Correspondence e-mail: fjfeher@uci.edu

Received 30 July 1999
Accepted 18 January 2000
The crystal structure of the title complex, (η^{6}-hexamethylbenzene) bis(trifluoromethanesulfonato- O) (2,4,6-trimethylanil-ine- N) ruthenium (II), $\quad\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{18}\right)\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}\right)\right]$, is described. The complex has the classic three-legged pianostool structure with a planar arene $1.667 \AA$ from the metal, two monodentate O-bound trifluoromethanesulfonate ligands [$\mathrm{Ru}-\mathrm{O} 2.169$ (2) and 2.174 (2) \AA] and one N -bound mesidine ligand $[\mathrm{Ru}-\mathrm{N} 2.198$ (2) \AA]. The $\mathrm{Ru}-\mathrm{N}$ distance is relatively long and the average $\mathrm{Ru}-\mathrm{O}$ distance is relatively short when compared with previously characterized $\mathrm{Ru}^{\mathrm{II}}$ complexes.

Comment

Crystals of the title compound, (I), were obtained during an investigation of ruthenium-arene complexes as potential precursors to $\mathrm{C}-\mathrm{N}$ bond-forming catalysts. The lability of the trifluoromethanesulfonate ligand has meant that complexes containing this moiety can be useful precursors to unsaturated species which can affect organic transformations.

(I)

Complex (I) was prepared by reaction of $\left[\mathrm{RuCl}_{2}\left(\eta^{6}\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right)\right]_{2}$ with an excess of silver trifluoromethanesulfonate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by addition of a stoichiometric amount of mesidine ($2,4,6$-trimethylaniline). The $\mathrm{Ru}^{\mathrm{II}}$ atom in this complex is best described as having an octahedral coordination environment (Fig. 1), with the arene occupying three coordination sites. Two further coordination sites are occupied by oxygen-bound trifluoromethanesulfonate ligands, with $\mathrm{Ru}-\mathrm{O}$ distances of 2.169 (2) and 2.174 (2) \AA, while the sixth site is occupied by the N -bonded mesidine ligand, with an $\mathrm{Ru}-\mathrm{N}$ distance of 2.198 (2) \AA. The rotational orientation of the arene is such that the tripodal ligands are staggered with respect to the arene C atoms, i.e., when viewed along the arene
centroid- Ru bond axis, the ligands eclipse the arene $\mathrm{C}-\mathrm{C}$ bonds rather than the C atoms.

The ring centroid of the arene is situated $1.667 \AA$ from the Ru atom. While there are substantial differences in the $\mathrm{C}-\mathrm{C}$ [1.417 (4)-1.443 (4) \AA] and $C-R u \quad[2.175(2)-2.213(2) ~ \AA]$ distances for the arene ring, there is no evidence of the alternating $\mathrm{C}-\mathrm{C}$ bonds observed in some ruthenium-arene complexes (Begley et al., 1991). The arene ring is essentially planar, with the mean deviation from the plane being $0.041 \AA$, in contrast with the bent arene observed in such complexes as $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$-paracymene $\left.) \mathrm{Cl}_{2}\left(\mathrm{PMePh}_{2}\right)\right]$, (II) (Bennett et al., 1972). This suggests that the trans influence of the N -donor ligand is smaller than that of the phosphine ligand, which is thought to induce the loss of planarity in (II).

Several complexes of $\mathrm{Ru}^{\text {II }}$ containing coordinated trifluoromethanesulfonate have previously been characterized crystallographically (Sutter et al., 1996; Abbenhuis et al., 1998; Fong et al., 1998; Gemel et al., 1997; Burns \& Hubbard, 1994; Blosser et al., 1992; Svetlanova-Larsen et al., 1996; Kraakman et al., 1992; de Klerk-Engels et al., 1994; Mauthner et al., 1997). The $\mathrm{Ru}-\mathrm{O}$ distances in these complexes range from 2.125 to $2.299 \AA$. The average $\mathrm{Ru}-\mathrm{O}$ distance of $2.172 \AA$ found for (I) is at the lower end of this range, suggesting a relatively strong Ru-trifluoromethanesulfonate bond. This is consistent with the experimentally observed low lability of trifluoromethanesulfonate ligands. The metrical parameters of the trifluoromethanesulfonate ligand itself in (I) do not differ significantly from those observed for other complexes.

Many ruthenium-arene complexes containing aromatic amine donor ligands have been characterized crystallographically (Mitra et al., 1997; Burrell \& Steedman, 1997; Begley et al., 1991; Manoli et al., 1974). The Ru-N distances in these complexes are in the range $2.135-2.213 \AA$. The $\mathrm{Ru}-\mathrm{N}$ distance for (I) is 2.198 (2) \AA, which is at the higher end of this range. This could be a consequence of the relatively large steric bulk of the hexamethylbenzene and mesidine ligands. This is also reflected in the $\mathrm{Ru}-\mathrm{N}-\mathrm{C}_{\text {arom }}$ angle observed for

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
the amine ligand, which is greater in the case of (I) [124.9 (2) ${ }^{\circ}$] than the range $117.4-121.5^{\circ}$ observed in previously reported complexes (Manoli et al., 1974; Begley et al., 1991; Burrell \& Steedman, 1997). Tilting of the arene away from the Ru atom is consistent with the observation that the bulkier 2,6-diisopropylaniline could not be induced to form a complex analogous to (I).

Experimental

$\left[\mathrm{RuCl}_{2}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right)\right]_{2}$ (Bennett et al., 1982; $153 \mathrm{mg}, 0.2365 \mathrm{mmol}$) and $\mathrm{AgCF}_{3} \mathrm{SO}_{4}$ ($243 \mathrm{mg}, 0.9642 \mathrm{mmol}$) were stirred under nitrogen in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ overnight. The resulting orange suspension was centrifuged to give a yellow solution and grey precipitate; the precipitate was presumably AgCl and excess $\mathrm{AgCF}_{3} \mathrm{SO}_{4}$. The yellow solution was carefully decanted and mesidine was added (300μ, 3.44 mmol). After 5 min , the solution was reduced in volume under vacuum and layered carefully with $\mathrm{Et}_{2} \mathrm{O}$. After 2 h , a dark-yellow microcrystalline powder, (I), was collected by vacuum filtration (yield $261 \mathrm{mg}, 82 \%$). Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ by vapour diffusion gave single crystals suitable for X-ray crystallography. Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, \delta\right.$, p.p.m.): 7.03 ($s, 2 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 4.65 (br, s,2H, NH_{2}), $2.39\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ (mesidine) $], 2.35[\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$ (mesidine)], $1.96\left[s, 18 \mathrm{H}, \mathrm{C}_{6}, \mathrm{C}_{6}\left(\mathrm{CH}_{3}\right)_{6}\right] ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125.7 \mathrm{MHz}\right.$, δ, p.p.m.): 136.14, $135.9,130.44,130.06[4 \mathrm{~s}$, $\mathrm{C}_{\text {arom }}$ (mesidine) $], 90.41(s, 6 \mathrm{C}, \mathrm{Ru}-\mathrm{C}), 20.85\left[s, \mathrm{C}\right.$, para $-\mathrm{CH}_{3}($ mesidine) $]$, $18.98\left[s, 2 \mathrm{C}\right.$, ortho- CH_{3} (mesidine) $], 15.83\left[s, 6 \mathrm{C}, \mathrm{C}_{6}\left(\mathrm{CH}_{3}\right)_{6}\right]$.

Crystal data

$\left[\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{18}\right)\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}\right)\right]$
$M_{r}=696.68$
Monoclinic, $P 2_{1} / n$
$a=13.9497$ (13) A
$b=14.7055$ (15) A
$c=14.049$ (2) A
$\beta=109.430(8)^{\circ}$
$V=2717.8(6) \AA^{3}$
$Z=4$
$D_{x}=1.703 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 35
\quad reflections
$\theta=5.36-14.49^{\circ}$
$\mu=0.811 \mathrm{~mm}^{-1}$
$T=163 \mathrm{~K}$
Cuboid, red-orange
$0.27 \times 0.27 \times 0.17 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer
$2 \theta / \omega$ scans
Absorption correction: numerical
(SHELXTL; Sheldrick, 1997)
$T_{\text {min }}=0.811, T_{\text {max }}=0.874$
6422 measured reflections
6237 independent reflections
5082 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.020 \\
& \theta_{\max }=27.5^{\circ} \\
& h=0 \rightarrow 18 \\
& k=0 \rightarrow 19 \\
& l=-18 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: }<1.0 \%
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.
$C g$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring.

$\mathrm{Ru} 1-\mathrm{O} 1$	$2.1692(17)$	$\mathrm{S} 1-\mathrm{O} 4$	$1.4696(18)$
$\mathrm{Ru} 1-\mathrm{O} 4$	$2.1739(17)$	$\mathrm{S} 2-\mathrm{O} 1$	$1.4731(18)$
$\mathrm{Ru} 1-\mathrm{N} 1$	$2.198(2)$	$\mathrm{N} 1-\mathrm{C} 13$	$1.444(3)$
$\mathrm{Ru} 1-\mathrm{Cg}$	1.667		
$\mathrm{O} 1-\mathrm{Ru} 1-\mathrm{O} 4$	$81.68(7)$	$\mathrm{O} 4-\mathrm{Ru} 1-\mathrm{N} 1$	$81.15(7)$
$\mathrm{O} 1-\mathrm{Ru} 1-\mathrm{N} 1$	$83.41(8)$	$\mathrm{C} 13-\mathrm{N} 1-\mathrm{Ru} 1$	$124.89(16)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0284 P)^{2}\right. \\
& +2.7894 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.011 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.44 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.00175 \text { (13) }
\end{aligned}
$$

The $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond-length ranges are 0.79 (4)-1.04 (4) and 0.84 (3)-0.94 (4) Å, respectively..

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: CARESS (Broach, 1978); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was funded by E. I. du Pont de Nemours Inc. Funding for the X-ray diffraction instrument was provided by the National Science Foundation, USA.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1103). Services for accessing these data are described at the back of the journal.

References

Abbenhuis, R., del Rio, I., Bergshoef, M. M., Boersma, J., Veldman, N., Spek, A. L. \& van Koten, G. (1998). Inorg. Chem. 37, 1749-1758.

Begley, M. J., Harrison, S. \& Wright, A. H. (1991). Acta Cryst. C47, 318-320.
Bennett, M. A., Huang, T.-N., Matheson, T. W. \& Smith, A. K. (1982). Inorg. Synth. 21, 74-79.
Bennett, M. A., Robertson, G. B. \& Smith, A. K. (1972). J. Organomet. Chem. 43, C41-43.
Blosser, P. W., Gallucci, J. C. \& Wojcicki, A. (1992). Inorg. Chem. 31, 23762384.

Broach, R. W. (1978). CARESS. Argonne National Laboratory, Illinois, USA.
Burns, R. M. \& Hubbard, J. L. (1994). J. Am. Chem. Soc. 116, 9514-9520.
Burrell, A. K. \& Steedman, A. J. (1997). Organometallics, 16, 1203-1208.
Fong, T. P., Lough, A. J., Morris, R. H., Mezzetti, A., Rocchini, E. \& Rigo, P. (1998). J. Chem. Soc. Dalton Trans. pp. 2111-2113.

Gemel, C., Kalt, D., Mereiter, K., Sapunov, V. N., Schmid, R. \& Kirchner, K. (1997). Organometallics, 16, 427-433.

Klerk-Engels, B. de, Groen, J. H., Kraakman, M. J. A., Ernsting, J. M., Vrieze, K., Goubitz, K. \& Fraanje, F. (1994). Organometallics, 13, 3279-3292.

Kraakman, M. J. A., de Klerk-Engels, B., Delange, P. P. M., Vrieze, K., Smeets, W. J. J. \& Spek, A. L. (1992). Organometallics, 11, 3774-3784.

Manoli, J. M., Gaughan, A. P. Jr \& Ibers, J. A. (1974). J. Organomet. Chem. 72, 247-259.
Mauthner, K., Slugovc, C., Mereiter, K., Schmid, R. \& Kirchner, K. (1997). Organometallics, 16, 1956-1961.
Mitra, K. N., Majumdar, P., Peng, S. M., Castineiras, A. \& Goswami, S. (1997). J. Chem. Soc. Chem. Commun. pp. 1267-1268.

Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sutter, J. P., James, S. L., Steenwinkel, P., Karlen, T., Grove, D. M., Veldman, N., Smeets, W. J. J., Spek, A. L. \& van Koten, G. (1996). Organometallics, 15, 941-948.
Svetlanova-Larsen, A., Zoch, C. R. \& Hubbard, J. L. (1996). Organometallics, 15, 3076-3087.

